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Abstract
We construct an Abelian algebra built by maximally entangled pure states. The
partial transposition maps this algebra for odd dimensions into a full matrix
algebra. ppt-states are in one-to-one correspondence to states with a positive
definite Wigner function. Special extremal ppt-states correspond to projections
of various dimensions. In particular, we recover the projections corresponding
to a complete set of mutually unbiased bases in prime dimensions.

PACS numbers: 03.67.Lx, 03.65.Ca

1. Introduction

In quantum information theory we usually work in finite-dimensional Hilbert spaces and
with the algebra acting on it. We are especially interested in the structure of the state space
over this algebra with respect to various view points. The study of these Hilbert spaces has
a long history [1, 2]. An important problem is the task to consider the noncommutative
algebra as a replacement of the classical algebra over the phase space that is now reduced
to a lattice. The probability distributions over the classical lattice are replaced by suitable
Wigner functions. One can demand various properties that these Wigner functions should
satisfy [3–5]. We can concentrate on the geometric interpretation. Replacing the algebra over
L2(R, dx) as considered by Wigner by a finite-dimensional matrix algebra Md the task is to
express location and momentum by a two-dimensional lattice of length d such that a state over
Md corresponds to a real functional over the lattice. Positivity can in general not be preserved.
This approach is followed in [5] and especially for odd dimensions a concrete construction
for the Wigner function is offered. In addition, [3] asks for a function that remains closer to
a probability in the sense that for a sufficiently large class of states it remains positive. Based
on a different construction than those of [5], namely based on a complete set of mutually
unbiased bases, they offer a solution. However, only for dimensions d = pr, p prime, such a
set is shown to exist. In other dimensions it is conjectured that such a set cannot exist.
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Another task in the framework of noncommutative information theory is the
characterization of entangled states. Especially here our understanding in higher dimensions
is rather limited. A well analysed example is the Werner states [6], characterized by a high
symmetry and depending on just one parameter. The high symmetry allows to calculate
the entanglement quantitatively and especially to fix the point where separable states turn
into entangled states [7, 8]. Other examples are offered in two, three and four dimensions
[9–12]. The symmetry group was slightly reduced. In two dimensions we have total control
on the set of states inside this class: it is possible to describe the set of states as lying
in a tetrahedron in which the entangled states are imbedded in the form of an octahedron
[9, 10].

In this paper we will show that the two problems, characterization of separable states in
a suitable class of states and construction and positivity of Wigner functions, are related. We
will consider the analogous set of states chosen in [10] in higher dimensions. The geometric
description where entanglement sets in is less obvious. We will extrapolate it from the Werner
states on the boundary of the separable states. Their tangent functionals also form part of
the boundary of the ppt-states and we will find the extremal separable states on these tangent
planes. In addition, we will show that in this restricted class of states the edges of the ppt-
states, i.e. the states that remain positive under partial transposition [14] are separable so that
here the boundary of the ppt-states and separable states coincide.

But even more we will see that the partial transposition serves to relate the two concepts,
Wigner functions and entanglement. It gives a natural map from an Abelian algebra of
dimension d2 to a non-Abelian algebra of the same geometric dimension. This non-Abelian
algebra is the full matrix algebra if the dimension is odd; otherwise it is the matrix algebra of
dimension

(
d
2

)2
tensorized with an Abelian algebra of dimension 4. This is in correspondence

with the results in [5], where the possibility of constructing Wigner functions also differs for
odd and even dimensions.

From this map we can gain additional insight into the structure of the states: our map from
the Abelian to the non Abelian algebra also serves as a map from a probability distribution over
the Abelian algebra into a Wigner function belonging to the non-Abelian algebra. This Wigner
function defines a real linear functional over the non-Abelian algebra which can uniquely be
decomposed into a difference of two positive functionals, orthogonal to one another. The
correspondence between the original state over the tensor product of the two matrix algebras
and the state over the new matrix algebra is such that ppt-states on the original algebra
are mapped into states on the non-Abelian algebra, whereas distillably entangled states are
mapped into real functionals that are not strictly positive. Decomposing these functionals
into their positive and negative part corresponds to the optimal decomposition of the original
state into the difference of weighted separable states, a decomposition that can also be used
as characterization of the amount of entanglement [15].

In addition, we can make more concrete statements about the properties of the operators
in the commuting algebra and their counterpart in the noncommuting algebra: a state on the
boundary of ppt-states determines a tangent space that corresponds to a ppt-witness. This ppt-
witness belongs to the Abelian algebra and therefore has a counterpart in the matrix algebra.
It turns out that this counterpart defines a projector. In this way we obtain from Werner
states in a fairly natural way a class of projection operators of dimension (d − 1)/2 that is
related to the choice of the Weyl algebra in the full matrix algebra. Further decomposition of
extremal separable Werner states allows for dimension d prime to construct all projections that
correspond to a complete set of mutually unbiased bases in the matrix algebra. As a further
consequence this implies that for d prime the definitions for the Wigner functional given
in [5] and in [3] coincide.
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2. The passage from the Abelian to the non-Abelian algebra

2.1. The set of states

In [10] we considered the subset of states over two qubits that correspond to density matrices
1
4 +

∑3
i λiσi ⊗ τi . These states reduced to the subsystems give the tracial state, i.e. the state

that is maximally mixed. Furthermore we note that these density matrices form a maximal
Abelian subalgebra of the two-qubit algebra. In [11] M2 was replaced by M3 and the Pauli
matrices were replaced by Gell–Mann matrices. In this paper we want to replace the qubit
algebra by Md ⊗ Md where Md is the full matrix algebra of dimension d, and as analogue
of the above states we look for a set of d2 vector states, where each vector corresponds to a
maximally entangled state and different vectors are orthogonal to one another.

Such a set of states can in fact be constructed. One possibility for such a construction is
based on the choice of a set of vectors that form an orthogonal basis |s〉, s = 0, . . . , d − 1,

in one factor Md . A maximally entangled state |�〉 (that in the following we will keep fixed)
implements a corresponding basis in the other factor such that |�〉 = 1√

d

∣∣∑d−1
0 s ⊗ s

〉
. Every

other maximally entangled state can be obtained as U ⊗ 1|�〉 with U unitary in Md . The
new vector is orthogonal to the original one if trU = 0. In order to obtain an orthogonal
basis of maximally entangled states we can use the results of [2]. We take the vectors
|�r1,r2〉 = Ur1,r2 ⊗ 1|�〉, ri = 0, 1, . . . , d − 1, where we take the Weyl operators Ur1,r2 in Md

that are determined by the choice of the orthonormal basis in Hd and are defined by

〈s|Ur1,r2 |s ′〉 = e
2π i
d

r1sδs−s ′+r2,0. (1)

They satisfy the algebraic relations

Ur1,r2Ut1,t2 = e
2π i
d

t1r2Ur1+t1,r2+t2 (2)

U ∗
r1,r2

= e
2π i
d

r1r2U−r1,−r2 . (3)

On the other hand, these algebraic relations (2, 3) determine the Weyl operators up to unitary
equivalence. They satisfy tr Ur1,r2 = dδr1,,0δr2,0 and therefore serve for the construction of the
other maximally entangled states.

The projection on |�〉 is an operator in Md ⊗ Md = Md2 . It can be expressed in terms
of the Weyl operators in Md ⊗ 1 together with those in 1 ⊗ Md as

|�〉〈�| = 1

d2

d−1,d−1∑
0,0

Ul1,l2 ⊗ U−l1,l2 , (4)

which can be seen by evaluating

〈�|s〉〈s ′| ⊗ |t〉〈t ′|�〉 = 1

d
δst δs ′t ′ = 1

d2
tr

d−1,d−1∑
0,0

Ul1,l2 ⊗ U−l1,l2 |s〉〈s ′| ⊗ |t〉〈t ′|.

The other maximally entangled states correspond to the projection operators in Md ⊗ Md ,

Pr1,r2 = ∣∣�r1,r2

〉〈
�r1,r2

∣∣ = 1

d2

(
Ur1,r2 ⊗ 1

) (
d−1,d−1∑

0,0

Ul1,l2 ⊗ U−l1,l2

) (
U ∗

r1,r2
⊗ 1

)

= 1

d2

d−1,d−1∑
0,0

e
2π i
d

(l1r2−l2r1)
(
Ul1,l2 ⊗ U−l1,l2

)
. (5)

Commutativity of the projections is a consequence of the orthogonality, but also can be verified
by direct calculation using (2), (3).
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2.2. The Abelian algebra

We consider the Abelian algebra M0
d2 as subalgebra of Md ⊗ Md , constructed in this way

either as
{
Pr1,r2

}′′
, the algebra built by the projections, or as

{
Ul1,l2 ⊗ U−l1,l2

}′′
, the algebra

built by the unitaries. Since it has dimension d2 it is maximally Abelian. It is unique up to
isomorphisms implemented by local unitaries U ⊗ Ũ if we keep |�〉 fixed (where the map
U → Ũ as defined in [6] depends on |�〉).

If we also vary |�〉, then all unitaries U ⊗ V implement possible isomorphisms between
M0

d2 . However, this does not exhaust all possibilities of constructing a maximally Abelian
algebra whose one-dimensional projections define states that are tracial on the subalgebras.
If e.g. the dimension d is not prime we can consider another possibility of constructing M0

d2 :
with d = p1, . . . , pl we can decompose the algebra into its factors Md = Mp1 ⊗ · · · ⊗ Mpl

and construct in each factor the Weyl operators. Then we can take as the unitaries used for
the construction of the projectors in Md2 the tensor products of the Weyl operators. Relations
between these two constructions of unitaries representing a phase-space are discussed in [16].

We return to our algebra built by the projections (5). Convex combinations of these
projections define density matrices belonging to M0

d2 . They can be written as

d−1,d−1∑
0,0

cl1,l2Pl1,l2 =
d−1,d−1∑

0,0

c̃−r2,r1Ur1,r2 ⊗ U−r1,r2 , (6)

with c̃ the Fourier transform of c given as

c̃r1,r2 = 1

d2

d−1,d−1∑
0,0

e
2π i
d

(l1r1+l2r2)cl1,l2 . (7)

On the two subfactors Md ⊗ 1 and 1 ⊗ Md they implement the tracial state ω
(
Ur1,r2

) =
tr

∑d−1,d−1
0,0 cl1,l2Pl1,l2

(
Ur1,r2 ⊗ 1

) = δr10δr20. As density matrices they define a positive cone
in the set of real linear functionals over Md ⊗Md , but we can also think of these functionals
restricted to the subalgebra M0

d2 . This cone has dimension d2 just as the states over the matrix
algebra Md .

2.3. The map to the non-Abelian algebra

A density matrix is distillably entangled if it does not stay positive under the partial
transposition T ⊗ 1 over Md ⊗ Md . Since our density matrix is expressed in terms of
Weyl operators we can easily calculate the effect of the partial transposition. In one factor the
transposition acts on the Weyl operators as

〈s|UT
r1,r2

|s ′〉 = e
2π i
d

r1s
′
δs ′−s+r2,0 = e

2π i
d

r1(s−r2)δs−s ′+r2,0 = e− 2π i
d

r1r2〈s|Ur1,−r2 |s ′〉. (8)

Therefore

T ⊗ 1
(
Ur1,r2 ⊗ U−r1,r2

) = e− 2π i
d

r1r2Ur1,−r2 ⊗ U−r1,r2 . (9)

The Abelian algebra M0
d2 is mapped into (T ⊗ 1)M0

d2 = A. A is to be taken as a linear
vectorspace which is a subspace ofMd ⊗Md . But as a subset ofMd ⊗Md also multiplication
is defined and maps A into itself, so that A is also an algebra. The typical multiplication
rule is

Ur1,−r2 ⊗ U−r1,r2Ut1,−t2 ⊗ U−t1,t2 = e− 2π i
d

2t1r2Ur1+t1,−r2−t2 ⊗ U−r1−t1,r2+t2 . (10)

Apart from the factor 2 in the exponent we recover the commutation relations between the Weyl
operators (2). Due to this factor we have to distinguish between even and odd dimensions.
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Let d be odd. Then we introduce as the Weyl operator Wr1,r2 ∈ A

Wr1,−2r2 = Ur1,−r2 ⊗ U−r1,r2 . (11)

Since s2 = 2r2 mod(d) has a unique solution r2 for given s2 we get the complete set of Weyl
operators in Md . Therefore, the algebra A built by e− 2π i

d
r1r2Ur1,−r2 ⊗ U−r1,r2 is isomorphic

to Md .
Let d = 2m. Then we can use the other method mentioned to construct M0

d2 . Let
σri

, ri = 0, 1, 2, 3, be the spin matrices including the identity. Then we can choose the
unitaries in Md as Ur1,...,rm

= σr1 ⊗ · · · ⊗ σrm
. Similar to (2) they satisfy

Ur1,...,rm
Us1,...,sm

= exp


 iπ

2

m∑
i=j

f (rj , sj , tj )


 σt1 ⊗ · · · ⊗ σtm, |f | = 1, (12)

where t = t (r, s) is determined by (r.s), i.e. t (r, r) = 0, t (0, s) = s, t (r, 0) = r, t (r 	= 0,

s 	= 0, r) 	= 0, r, s. We do not specify f ; it is sufficient to note that it is an integer and that
a product is again of the same form with an additional factor being either ±1,±i. Further
tr Ur1,...,rm

= δr1,0 · · · δrm,0. Again with an appropriate integer f (r1, . . . , rm)

|�〉〈�| = 1

4m

∑
(−1)f (r1,...,rm)Ur1,...,rm

⊗ Ur1,...,rm
. (13)

Therefore all maximally entangled states Ur1,...,rm
⊗ 1|�〉〈�|U ∗

r1,...,rm
⊗ 1 are of the form (13)

with varying sign function f . According to the multiplication rule (12) all Ur1,...,rm
⊗ Ur1,...,rm

commute with one another and the projections form our Abelian M0
2m . But now the

transposition acts as T (Ur1,...,rm
) = ±Ur1,...,rm

. Therefore the partial transposition maps the
Abelian M0

2m into itself. Especially for m = 2 this algebra was studied in [12]. Ppt-states
could be characterized, and in addition it was shown that bound entanglement is possible.

Let d be even and d
2m odd. Then we can introduce Md 
 M d

2m
⊗M2m . We construct the

Weyl operators on M d
2m

and the corresponding Abelian algebra, whereas for M2m we choose
the above construction. As projections we take the tensor product of projections belonging
to the two Abelian algebras M0

d2

22m

⊂ M d
2m

⊗ M d
2m

respectively to M0
22m ⊂ M2m ⊗ M2m .

They define again an orthonormal set of maximally entangled states. The transposition
Td = T d

2m
⊗T2m respects the tensor product and we get T ⊗1

(
M0

d2

22m

⊗M0
22m

) 
 M d
2m

⊗M0
2m .

An alternative is to keep the algebra built by (9). Then ∀r1, r2[
Ur1,−r2 ⊗ U−r1,r2 , U d

2 ,− d
2
⊗ U− d

2 , d
2

] = [
Ur1,−r2 ⊗ U−r1,r2 , U0,− d

2
⊗ U0, d

2

]
= [

Ur1,−r2 ⊗ U−r1,r2 , U d
2 ,0 ⊗ U− d

2 ,0

] = 0
(14)

Therefore, the algebra has a centre of dimension 4, built by the operators(
U0,− d

2
, U d

2 ,0, U d
2 ,− d

2
, 1

)
. The total algebra (T ⊗ 1)M0

d2 
 M d
2
⊗M0

4 where we can construct
the Weyl operators Wl1,l2 creating Md

2
by

Wl1,l2 =
∑
α1,α2

Ur1,−r2 ⊗ U−r1,r2 , l1, l2 = 0, . . . ,
d

2
, α1, α2 = 0, 1; rk = lk + αk

d

2
.

(15)

They satisfy the multiplication rules (2), (3) for d
2 and act in the subspace determined by the

projection W0,0 that belongs to the centre like the matrix algebra M d
2
.

In the following we will concentrate on d being odd, not only because then the mapping
into the matrix algebra is more transparent, but also because the construction of the Wigner
functional offered in [5] becomes unique only for odd dimensions.
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2.4. The Wigner function

The algebra is linearly spanned by the Weyl operators and it suffices therefore to know the
expectation values of the Weyl operators. However, the passage to the Wigner function is
favoured because they remain real and in comparison to a classical distribution over the phase
space only the positivity is lost. In this sense they remain closer to the classical description.

There exists an immense literature on the Wigner functions. See e.g. the review [13]. We
collect some basic facts. Given a state respectively a density matrix ρ for the infinite system
the Wigner distribution P(x, p) corresponding to this state is defined as

P(x, p) = 1

π

∫ ∞

−∞
dy〈x − y|ρ|x + y〉 e2ipy. (16)

We prefer to express the distribution as expectation value over the Weyl operators

P(x, p) = 2i
∫

dy dα tr ρ e−2i(P̂−p)y eiα(X̂−x) e−iαy, (17)

where X̂, P̂ are the location and momentum operators. Therefore, the natural replacement as
it is obtained in [5] reads

PA,ρ(l1, l2) =
d−1,d−1∑

0,0

tr ρW(r1, 2r2) e
2π i
d

(r1l1−2r2l2+r1r2), (18)

with ρ the density matrix inMd defining the state overMd . It is easy to check using (3) that this
expression is real. We can read it as a real function over the lattice, depending linearly on the
state over the matrix algebra. Again we can recover the expectation value of the Weyl operators
from P(l1, l2) via the Fourier transform provided d is odd. It should be noted that [3, 4]
concentrate on other properties of the Wigner function: the Wigner function should be a real
linear function over a lattice, linearly given by the density matrix, that mimics a kind of set
in the classical phase space such that the Wigner functions corresponding to these projections
should be positive definite. If it is possible to find a set of mutually unbiased basis it is not
necessary to refer to the Weyl operators.

Let us return to our map from an Abelian algebra to a non-Abelian algebra. We restrict
ourselves to odd dimensions, so that the non-Abelian algebra is a full matrix algebra for which
the Wigner function in the sense of [5] exists. The partial transposition maps a density matrix
ρ in Md ⊗Md into a self-adjoint operator that is not necessarily positive. The corresponding
state ω over Md ⊗ Md , ω(B) = tr ρB,B ∈ Md ⊗ Md is therefore mapped into a real
linear functional ωT over Md ⊗ Md , ω

T (A) = tr(T ⊗ 1)ρA = tr ρ(T ⊗ 1)A. Reduced to
M0

d2 = {Pl1,l2}′′ it remains a real linear function. Similarly, we can consider a state restricted to
the linear subset A. ω(A),A ∈ A = (T ⊗1)M0

d2 , in general be a real linear functional but not
a state over the algebra A. Combined with the partial transposition we obtain ωT (A), which is
again a state over A. This state respectively a real linear functional defines the Wigner function
according to (18) over A with the Weyl operators given by (11). If however we examine the
details of the map and combine (5), (7), (9) and (12), then we note that the Wigner functions
that correspond to the new real linear functional over A coincide with the original state over
M0

d2 in the sense that

ω(P−2l2,l1) = tr ρP−2l2,l1 = tr(T ⊗ 1)ρ(T ⊗ 1)(P−2l2,l1) = PA,(T ⊗1)ρ(l1, l2), (19)

where only now (T ⊗ 1)ρ has to be inserted in (18) and is not a positive density matrix but
corresponds to the possibly not positive definite ω ◦ (T ⊗ 1). Also the trace has to be taken in
the larger Md ⊗ Md .
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As a consequence we can conclude that

Theorem 2. A density matrix of Md2 implements a functional ω over A = (T ⊗1)M0
d2 ⊂ Md2

via ω(A) = tr(T ⊗ 1)ρA,A ∈ A. The corresponding Hermitian linear functional ω ◦ (T ⊗ 1)

(which is not necessarily positive ) leads to a positive definite Wigner function.

Proof. ω(T ⊗ 1) ◦ (T ⊗ 1)(P−2l1,l2) = PA(l2, l1) is positive definite, since it coincides with
the expectation of a projector in a state. Interpreted as the Wigner function related to A it is
positive and corresponds to a Hermitian functional. ω(T ⊗ 1)

(
Ul1,l2 ⊗ U−l1,l2

) = ω
(
Wl1,−2l2

)
defines a state over the algebra A. �

The positive Wigner function corresponds to a Hermitian linear functional that can be
decomposed into the difference of two positive linear functionals. This difference is unique
provided we demand that the two corresponding density matrices are orthogonal to one
another. There are some positive Wigner functions for which this decomposition is trivial,
i.e. the negative part is 0. These Wigner functions form a convex set, and the corresponding
states, i.e. those that have positive Wigner functions, form the corresponding convex set in
state space. Let us call these states pW-states in analogy with the ppt-states. We can copy the
considerations of [14] and conclude that the set is determined by its tangent functionals. It
remains to search for the relation between the ppt-states and pW-states.

3. Entanglement witnesses versus projectors

A ppt-state ω is a state ω for which ω ◦ T ⊗ 1 remains positive as a state over Md2 . Since
we are interested in it as a state over M0

d2 we have to make sure that violation of positivity is
already felt on M0

d2 . This is in fact the case. We argue with the tangent functionals:

Theorem 3. Consider the intersection of states given by density matrices from M0
d2 and

ppt-states. They form a convex set C0 in the convex set C of ppt-states. We characterize
the boundary of C by its tangent planes. The tangent planes at a boundary point ωe of C
(we include the possibility that there are several tangent planes) are defined by entanglement
witnesses Aωe

∈ Md2 such that ωe

(
Aωe

) = 0 and ω
(
Aωe

)
> 0 for all ω in the interior of C.

For ωe ⊂ C0 it follows that among the possible tangent functionals (that can be unique) there
is one with Aωe

∈ M0
d2 .

Proof. Let A correspond to a tangent functional for the set of ppt-states corresponding
to the extremal ppt-state ωe. Then for all unitaries U,V ∈ Md the state ω̄e(B) =
ωe(U

∗ ⊗ V ∗BU ⊗ V ) is also a ppt-state on the boundary of C.U ⊗ V AU ∗ ⊗ V ∗ defines
its corresponding tangent functional. If ω̄e = ωe, i.e. if the corresponding density
matrix ρ commutes with U ⊗ V, then every convex superposition of the two possible
entanglement witnesses λA + (1 − λ)U ⊗ V AU ∗ ⊗ V ∗, 0 � λ � 1, also gives a
tangent functional. Let us take an ωe whose density matrix belongs to M0

d2 . All unitaries
of M0

d2 are of the desired tensor product form and in addition commute with the chosen
density matrix. Therefore, we can take the invariant mean η with respect to all unitaries in
M0

d2 : η(A) = ∑
l1,l2

(
Ul1,l2 ⊗ U−l1,l2AU ∗

l1,l2
⊗ U ∗

−l1,l2

)
and still obtain a tangent functional for

ωe that in addition commutes with M0
d2 . But this algebra is maximally Abelian: all operators

that commute with M0
d2 belong to M0

d2 . Therefore the so constructed tangent functional
corresponds to a witness belonging to M0

d2 . It follows that C0 is the set of states determined
by a density matrix ρ ∈ M0

d2 for which also (T ⊗ 1)ρ remains a density matrix, though not
belonging to M0

d2 . �
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If we combine theorem 2 and theorem 3, we obtain

Theorem 4. The set of real linear functionals over M0
d2 and the set of real linear functionals

over Md are in one-to-one correspondence by the map ω → ω ◦ T ⊗ 1. Under this map
ppt-states correspond to pW-states.

Proof. For a ppt-state both ω and ω ◦ T ⊗ 1 is a state. According to (19) it follows that
PA,ρ(l1, l2)),PA,(T ⊗1)ρ(l1, l2) is positive ∀(l1, l2) which by definition is the case for a pW-
state. Note that in (18) it was not necessary to assume ρ ∈ M0

d2 . �

We want to learn more about the geometry of the ppt-states or equivalently the pW-states
and their tangent functionals, where both viewpoints might give additional insight. Assume
that we have found an extremal ppt-state ω0,0 with entanglement witness At

0,0. Then ωr1,r2(B) =
ω00

((
Ur1,r2 ⊗ 1

)
B

(
U ∗

r1,r2
⊗ 1

))
is also an extremal ppt-state and

(
U ∗

r1,r2
⊗ 1

)
At

0,0

(
Ur1,r2 ⊗ 1

)
is its entanglement witness. There remains the possibility that the two states belong to the
same tangent space or equivalently that At

0,0 commutes with Ur1,r2 ⊗ 1. On the other hand not
all entanglement witnesses have to be connected by these unitary transformations. From a
geometric viewpoint there remains as the extreme case that to every tangent space there exists
only one extremal ppt-state. For geometric reasons we only know that the number of tangent
spaces must be �d2 (compare the octahedron for d = 2 where in addition to the obvious
symmetry relation we have a reflection).

We turn to the image of the entanglement witnesses in Md. We know that with ω0,0 a
ppt-state on the boundary ω0,0 ◦ T ⊗ 1 defines a state over Md, but for an arbitrary small
perturbation becomes only a real functional. This functional corresponds to a Hermitian
operator that can uniquely be decomposed into its positive and negative parts and therefore
also gives a unique decomposition of the real functional into the difference of two positive
functionals ω+ − ω−. Then ω−

‖ω−‖ has accumulation points, and similarly ω+ has a limit point
that is orthogonal to the accumulation points of the negative part. Therefore a state on the
boundary defines a projection operator on its nontrivial orthogonal complement. Let us call it
Q0,0. In the limit we keep

ω0,0(T ⊗ 1Q0,0) = 0. (20)

Note however that we do not conclude so far that Q0,0 defines a tangent functional.
On the other hand, as for the ppt-states the set of linear functionals that remain positive is

a convex set characterized by its tangent planes that in this context correspond to the images
by T ⊗ 1 of the optimal entanglement witnesses. Do the images of the ppt-witnesses that
coincide with the pW-witnesses reflect the projection operators that are the characteristic of
the extremal pW-states?

3.1. Werner states and their images

We study the above question on special states where we know the explicit form of the extremal
ppt-states and can also construct the corresponding ppt-witness.

The set of states that we consider contains especially the Werner states with density
matrices

ρ =
(

1 − c

d2

)
1 + cPr1,r2 . (21)

For simplicity we concentrate on P0,0. The other Werner states and according to theorem 3
also their ppt-witnesses can be obtained according to (5) by applying Ur1,r2 ⊗1. The entangled
states are those for which 1

d+1 � c � 1 where the upper bound guarantees positivity whereas
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the lower bound can be found in [8, 9]. A Werner state is characterized by the fact that it is
invariant under U ⊗Ũ ∀U ∈ Md where the details on how Ũ is determined by U depend on the
set (r1, r2). As a consequence every optimal entanglement witness is mapped by U ⊗ Ũ into
an optimal entanglement witness. Especially averaging over all permitted rotations U ⊗ Ũ

generates again an optimal entanglement witness that commutes with U ⊗ Ũ . Since we know
that for the Werner state there exists only one tangent space, the entanglement witness is
unique and of the form 1 + gP0,0. With

tr

(
1

d(d + 1)
+

1

d + 1
P0,0

)
(1 + gP0,0) =

(
d2

d(d + 1)

)
+

1

d + 1
+ g

(
1

d + 1
+

1

d(d + 1)

)
= 0

(22)

we obtain g = −d. Therefore the tangent plane for the pW-states over Md is determined by

T ⊗ 1(1 − dP0,0) = 1 − 1

d

∑
r1,r2

e2π i
d
r1r2Ur1,−r2 ⊗ U−r1,r2 . (23)

Calculating∑
r1,r2

e2π i
d
r1r2Ur1,−r2 ⊗ U−r1,r2

∑
t1,t2

e2π i
d
t1t2Ut1,−t2 ⊗ U−t1,t2

=
∑

r1,r2,t1,t2

e2π i
d
(r1r2+t1t2+2t1r2)Ur1+t1,−r2−t2 ⊗ U−r1−t1,r2+t2

=
∑

r1,r2,t1,t2

δr1+t1,0δr2+t2,0 = d2 (24)

we observe that
(
1 − 1

d

∑
r1,r2

e2π i
d
r1r2Ur1,−r2 ⊗ U−r1,r2

)2 = 2
(
1 − 1

d

∑
r1,r2

e2π i
d
r1r2Ur1,−r2 ⊗

U−r1,r2

)
and therefore proportional to a projector βQ ⊗ 1. Evaluating tr βQ ⊗ 1 = d(d − 1)

we conclude that the dimension of Q equals d−1
2 .

If however we examine the matrices over Md that belong to the Werner states, then we
get

T ⊗ 1

(
1

d(d + 1)
+

1

d + 1
P

)
= 1

d(d + 1)
+

1

d2(d + 1)

∑
r1,r2

e2π i
d
r1r2Ur1,−r2 ⊗ U−r1,r2 . (25)

Using (20) the density operator is again proportional to a projector αQ̄ with α2 = 2 1
d(d+1)

.

Evaluating its dimension we use trMd2 αQ̄ ⊗ 1 = 1 and obtain 1
αd

= d+1
2 . Evidently Q̄Q = 0

in correspondence with the fact that Q defines a tangent space, and Q = 1 − Q̄.

The other tangent space corresponding to c = 1 describes the border line where the
functional over Md2 stops to be positive, without referring to the partial transposition.
Therefore, we cannot expect and it is also not true that the corresponding functional over
Md violates positivity and defines a projection.

Note that Ag = T ⊗1
(
1+gPr1,r2

) = βQ with Q being a projection according to (24) has as
only solutions g = ±d. Therefore also on this basis we find the borderline between entangled
states and ppt-states respectively the border of pW-states. In fact, in this special setting the
projection operator that corresponds to the border already coincides with the operator defining
the tangent functional.

It remains to study the relation between the operators

Qr1,r2 = 1

2

(
1 − 1

d

∑
l1,l2

e
2π i
d

(l1r2−l2r1+l1l2)Ul1,−l2 ⊗ U−l1,l2

)
. (26)



7060 H Narnhofer

We evaluate

tr Qr1,r2Qt1,t2 = 1

4

(
d2 − 2d +

1

d2

∑
l1,l2

e
2π i
d

(l1r2−l2r1−l1t2+l2t1)

)

= d2 − 2d

4
= d(d − 2)

4
, (r1, r2) 	= (t1, t2). (27)

Therefore the projections are homogeneously distributed. Especially for d = 3 they are one
dimensional, but they do not serve to assign lines in phase space as it is desired in [3].

4. The geometry of extremal ppt-states

Let us first consider d = 2m. We choose the Abelian algebra built by (13). In detail this
algebra is studied in [12] for m = 2. The picture is more transparent if we remove the
normalization of states and consider instead linear functionals. Since all operators commute
we can use the classical picture. Therefore the set of positive functionals is a cone in the
set of functionals, built by d2 hyperplanes, corresponding to positive operators orthogonal to
one of the Werner states. The partial transposition maps the Abelian algebra into itself and
acts as a partial reflection. Therefore it transforms the set of positive functionals into another
cone with the same origin built by other d2-dimensional hyperplanes. These hyperplanes are
tangent functionals to the set of ppt-states and are determined by the d2 points, where the linear
combination of a Werner state and the tracial state turns from a ppt-state to a non-ppt-state.
This transition point is known. In addition, we know that for this class of states we do not have
to distinguish between ppt-states and separable states. The total set of ppt-states is therefore
the intersection of the two cones with common origin and thus again a cone, now built by
2d2 hyperplanes, and there are no other restrictions. In particular, the additional hyperplanes
correspond to entanglement witnesses Ar , and the extremal ppt states can be characterized by
satisfying

∃r ∈ {1, . . . , d2}, ωe(Ar) = 0. (28)

However, as is shown in [12] even in this transparent situation the set of separable states is
smaller than the set of ppt-states. A complete description of separable states is missing.

This consideration remains only partly true in other dimensions: the boundary of the
ppt-states splits into two parts, one where the linear functional f stops being positive, the
other, where f ◦ T ⊗ 1 stops being positive. One corresponds to a cone with d2 hyperplanes
as boundary; the other is given by the geometry of pure states over a d-dimensional matrix
algebra, which can also be characterized by tangent planes. The set of ppt-states is again the
intersection of these two sets.

4.1. The structure of the tangent planes for odd dimension

We now turn to d odd and analyse the boundary in more detail. Then we can conclude that

Lemma. All states satisfying

ω
(
T ⊗ 1

(
1 − dPr1,r2

)) = 0 (29)

for some (r1, r2) do not belong to the interior of the set of ppt-states.

More precisely, looking for candidates on the boundary of the set of ppt-states we have
to look for states corresponding to a density matrix ρ = ∑

l1,l2
cl1,l2Pl1,l2 satisfying∑

l1,l2

cl1,l2 tr Pl1,l2

(
1 − dPs1,s2

)
� 0, ∃{r1, r2},

∑
l1,l2

cl1,l2 tr Pl1,l2

(
1 − dPr1,r2

) = 0.
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It follows that 0 � cl1,l2 � cr1,r2 = 1
d
. This is a sufficient condition for belonging to the

boundary of ppt-states. We concentrate on the extremal states that under this condition
cannot further be decomposed. These are the states characterized by a set � such that the
corresponding density matrix ρ� = ∑

l1,l2
cl1,l2Pl1,l2 with cl1,l2 = 1

d
, {l1, l2} ⊂ �. It follows

that the size of � is |�| = d and
∑

(l1,l2)⊂�
1
d
Pl1,l2 therefore corresponds to d-dimensional

projection operators in M0
d2 . We will search for those � for which the corresponding state is

separable. According to (29) it is also on the boundary of ppt-states. The convex combinations
of all these states form a subset of the separable states. We expect that it is really smaller than
the set of separable states, and that in addition also ppt-states exist, which are not separable.
We leave this problem for further investigation. However, already the considered states
determined by the permitted � will give insight into the Wigner functions. Therefore we hope
that the interplay of the description will give further understanding on one hand of the Wigner
functions, and on the other hand of a refined description of separable and ppt-states.

We start with a pure separable state

|〉〈| =
∑

r,r ′s,s ′
ar āsbr ′ b̄s ′ |r, r ′〉〈s, s ′| = |a〉〈a| ⊗ |b〉〈b|.

This state will not belong to the class of states in M0
d2 . But we can create a separable density

matrix in M0
d2 that corresponds to this state by taking the invariant mean with respect to the

group M0
d2 :∑

l1,l2

Ul1,l2 ⊗ U−l1,l2 |〉〈|U ∗
l1,l2

⊗ U ∗
−l1,l2

=
∑

r,s,r ′,s ′,l1,l2

e
2π i
d

l1(r−s−r ′+s ′)ar āsbr ′ b̄s ′ |r + l2, r
′ + l2〉〈s + l2, s

′ + l2|

= d
∑

u,u′,v,l2

au−l2 āv−l2bu′−l2 b̄u′−u+v−l2 |u, u′〉〈v, u′ − u + v|. (30)

The so obtained state is separable but not necessarily extremal separable. However, all extremal
separable states in M0

d2 are of this type: assume that such an extremal separable state can be
written as

∑
i |i〉〈i |. Taking the invariant mean does not change the state but produces

a nontrivial decomposition into separable states belonging to M0
d2 if the averages over the

different |i〉〈i | do not coincide. Therefore, we can start with a state of the type (30) and
compare it with

∑
r1,r2

cr1,r2Pr1,r2 = 1

d

∑
r1,r2

cr1,r2Ur1,r2 ⊗ 1

∣∣∣∣∣∣
∑

j

j, j

〉 〈∑
k

k, k

∣∣∣∣∣
=

∑
r1,u,u′,v

1

d
cr1,u−u′ e

2π i
d

r1(u−v)|u, u′〉〈v, u′ − u + v|. (31)

(30) and (31) gives∑
r1

cr1,u−u′ e
2π i
d

r1(u−v) =
∑
l2

au−l2 āv−l2bu′−l2 b̄u′−u+v−l2

or

cr1,r2 = 1

d

∑
t,z

e− 2π i
d

zr1at āt−zbt+r2 b̄t+r2−z = 1

d

∣∣〈a|Ur1
2 ,r2

|b〉∣∣2
(32)
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where r1/2 is the solution of 2s1 = r1 mod(d). Especially for normalized ‖‖ = 1 we can
control

0 � 1

d

∑
t,z

at āt−zbt b̄t−z = c00 � 1

d

1

d

∑
r1,r2,t,z

e− 2π i
d

zr1at āt−zbt+r2 b̄t+r2−z = 1

as it should be. Let us concentrate on our condition that the separable state lies on the tangent
plane corresponding to the Werner state with c00 = 1

d
.

c00 = 1

d
= 1

d

∑
t,z

at āt−zbt b̄t−z = 1

d
〈b̄|a〉〈a|b̄〉.

This is only satisfied for

|b̄〉 = eiα0,0 |a〉 (33)

where without loss of generality we may assume that α0,0 = 0. Similarly

cr1,r2 = 1

d
= 1

d

∑
t,z

e− 2π i
d

zr1at āt−zbt+r2 b̄t+r2−z

demands

|b̄〉 = eiαr1 ,r2 Ur1/2,r2 |a〉. (34)

If both c0,0 = cr1,r2 = 1
d

, then we can use (33), (34) and continue to

|a〉 = eiαnr1 ,nr2 Unr1/2,nr2 |a〉. (35)

Inserting this into (32) we conclude that also cnr1,nr2 = 1
d
. It follows that the sets � that

correspond to separable states on the chosen hyperplane have to contain {nr1, nr2, n =
0, . . . , d − 1}. Especially for d prime they have to be equal to {nr1, nr2, n = 0, . . . , d − 1} for
given (r1, r2), since |�| = d. It remains to find |a〉, which satisfies (35). The explicit form of
the vector depends on (r1, r2). Solutions to (35) are given by

� = {n = 0, . . . , d − 1; 0}: at = δt,0

� = {n, nl2; n = 0, . . . , d − 1}: at = 1√
d

e
2π i
d

l2t
2 (36)

and these are all permitted sets �.

We have therefore found states that are both extremal ppt-states and extremal separable
states. They belong to the tangent plane. As a consequence the boundary of the ppt-states and
that of separable states contain d2 planes of dimensions d + 1 and the two boundaries coincide
on these planes.

Next we study the counterpart in Md of the extremal separable states we have found.
The structure will turn out to be more familiar. We restrict our analysis to d prime. In this
situation (36) describes all sets � that belong to the tangent plane with witness (1 − dP0,0).

We look which states on Md correspond to the extremal ppt-states that we have constructed.
The density matrices of the extremal pW-states

Qr1,r2 =
∑

n

(T ⊗ 1)Pnr1,nr2 = 1

d2

∑
n,l1,l2

e
2π i
d

(nl1r2−nl2r1−l1l2)Ul1,−l2 ⊗ U−l1,l2

= 1

d

∑
l1r2−l2r1=0

e− 2π i
d

l1l2Ul1,−l2 ⊗ U−l1,l2 (37)
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turn out to be one-dimensional projection operators and we can distinguish (d + 1) of them
(every set contains d points, among them (0, 0), all others different). They satisfy

1

d
trd2Q1,rQ1,s = 1

d
= trdQ1,rQ1,s , r 	= s

trdQ0,1Q1,r = 1

d
.

Here we can take the trace either as considering Q to be an operator in Md2 or as an
operator lying in Md . Therefore, we can interpret them as projections belonging to different
mutually unbiased bases. So far we have found the extremal ppt-states corresponding to the
entanglement witness (1 − dP0,0). The extremal ppt-states corresponding to

(
1 − dPs1,s2

)
can

be obtained by the unitary transformation with Us1,s2 ⊗ 1. The corresponding extremal states
with the positive Wigner function are given by the projections

Qs1,s2
r1,r2

= 1

d

∑
l1r2−l2r1=0

e− 2π i
d

(l1l2+s1l2+s2l1)Ul1,−l2 ⊗ U−l1,l2 (38)

Again they satisfy, e.g.,

tr Q
t1,t2
0,1 Q

s1,s2
1,n = 1

d
, {s1, s2} 	= {t1, t2},

but now

Q1,nQ
s1,s2
1,n = 0, {s1, s2} 	= {0, 0}

Further

Qs1,s2
r1,r2

= Qt1,t2
r1,r2

, ∀ r1s1 + r2s2 = r1t1 + r2t2.

These equalities are consequences of (38). (r1, r2) determine, which (l1, l2) contribute, the
appropriate relations between (s1, s2) and (t1, t2) guarantee that they contribute with the same
phase factor. Altogether we have found d(d + 1) separable states on the boundary of ppt-states
that cannot be further decomposed into states on the boundary, and these states correspond in
Md to d(d + 1) projections that define the desired d + 1 mutually unbiased bases in the sense
of [3, 4]. But even more, in [17] it is shown that these are the vertices such that every state for
which the Wigner function compatible with the mutually unbiased bases in the sense of [3]
is positive, is a convex combination of these pure states. Since more Wigner functions are taken
into account, this set is an intersection of sets in our context. This supports the conjecture that
the corresponding polyhedron in the set of separable states does not cover all separable states.
On the other hand it raises the question whether separable states give some characteristic
features to the corresponding Wigner functions. Further we keep the additional boundary
corresponding to states over M0

d2 of the form 1 − 1
d2 Pr1,r2 , but also those determining the

boundary of the ppt-states. Again our special convex set of separable states covers a subset of
ppt-states.

5. Conclusion

Starting with a maximally Abelian algebra that represents maximally entangled states we
moved via the partial transposition to a non-Abelian algebra that for odd dimensions is the
full matrix algebra. The states on the Abelian algebra define functionals on the non-Abelian
algebra. With the appropriate and natural choice of Weyl operators this partial transposition
maps the initial state considered as a restricted state over a classical lattice into the Wigner
functions offered in [5]. Ppt-states and states with positive Wigner function are in one-to-one
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correspondence. The decomposition into extremal separable states that is fairly well under
control can be used to define operators in the matrix algebra. At least for d prime these
operators turn out to be the projections on the set of unbiased bases which is the starting point
for the definition of the Wigner functions as proposed in [3]. As a consequence the definition of
the Wigner functions in the sense of [5] can be considered as a generalization of the definition
of [3] to dimensions that are not prime. The decomposition into extremal separable states can
be used to find a replacement in these dimensions for the mutually unbiased bases. This is
under investigation.

Acknowledgment

It is a pleasure to thank Bernhard Baumgartner for many critical remarks.

References

[1] Weyl H 1950 Theory of Groups and Quantum Mechanics (New York: Dover)
[2] Schwinger J 1960 Proc. Natl Acad. Sci. USA 46 570
[3] Gibbons K S, Hoffman M J and Wootters W K 2004 Phys. Rev. A 70 062101
[4] Pittenger A O and Rubin M H 2005 J. Phys. A: Math. Gen. 38 6005–36
[5] Chaturvedi S, Ercolessi E, Marmo G, Morandi G, Mukunda N and Simon R 2005 Pramana 65 981–93 (Preprint

quant-ph/0507094)
[6] Werner R F 1989 Phys. Rev A 40 4277
[7] Terhal B M and Vollbrecht K G 2002 Phys. Rev. Lett. 85 2625
[8] Benatti F, Narnhofer H and Uhlmann A 2003 J. Math. Phys. 44 2402
[9] Vollbrecht K G and Werner R F 2000 Preprint quant-ph/0010095

[10] Bertlmann R A, Narnhofer H and Thirring W 2002 Phys. Rev. A 66 02319
[11] Bertlmann R A, Durstberger K, Hiesmayr B C and Krammer P 2005 Phys. Rev. A 72 052331
[12] Benatti F, Florianini R and Piani M 2004 Open Syst. Inf. Dyn. 11 325
[13] Voudras A 2004 Rep. Prog. Phys. 67 267
[14] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[15] Rudolph O 2000 Preprint math-ph/005011
[16] Revzen M, Khanna F C, Mann A and Zak J 2005 Preprint quant-ph/0508191
[17] Cormick C, Galvao E F, Gottesman D, Paz J P and Pittenger A O 2006 Phys. Rev. A 73 012301

http://dx.doi.org/10.1103/PhysRevA.70.062101
http://dx.doi.org/10.1088/0305-4470/38/26/012
http://www.arxiv.org/abs/quant-ph$/$0507094
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevLett.85.2625
http://dx.doi.org/10.1063/1.1570509
http://www.arxiv.org/abs/quant-ph$/$0010095
http://dx.doi.org/10.1103/PhysRevA.66.032319
http://dx.doi.org/10.1103/PhysRevA.72.052331
http://dx.doi.org/10.1007/s11080-004-6622-6
http://dx.doi.org/10.1088/0034-4885/67/3/R03
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://www.arxiv.org/abs/math-ph$/$005011
http://www.arxiv.org/abs/quant-ph$/$0508191
http://dx.doi.org/10.1103/PhysRevA.73.012301

	1. Introduction
	2. The passage from the Abelian to the non-Abelian algebra
	2.1. The set of states
	2.2. The Abelian algebra
	2.3. The map to the non-Abelian algebra
	2.4. The Wigner function

	3. Entanglement witnesses versus projectors
	3.1. Werner states and their images

	4. The geometry of extremal ppt-states
	4.1. The structure of the tangent planes for odd dimension

	5. Conclusion
	Acknowledgment
	References

